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Abstract

Obtaining high performance without machine-specific tuning is an important goal of
scientific application programmers. Since most scientific processing is done on commodity
microprocessors with hierarchical memory systems, this goal of “portable performance” can
be achieved if a common set of optimization principles is effective for all such systems. It is
widely believed, or at least hoped, that portable performance can be realized.

The rule of thumb for optimization on hierarchical memory systems is to maximize tem-
poral and spatial locality of memory references by reusing data and minimizing memory
access stride. We investigate the effects of a number of optimizations on the performance
of three related kernels taken from a computational fluid dynamics application. Timing the
kernels on a range of processors, we observe an inconsistent and often counterintuitive im-
pact of the optimizations on performance. In particular, code variations that have a positive
impact on one architecture can have a negative impact on another, and variations expected
to be unimportant can produce large effects.

Moreover, we find that cache miss rates—as reported by a cache simulation tool, and con-
firmed by hardware counters—only partially explain the results. By contrast, the compiler-
generated assembly code provides more insight by revealing the importance of processor-
specific instructions and of compiler maturity, both of which strongly, and sometimes unex-
pectedly, influence performance.

We conclude that it is difficult to obtain performance portability on modern cache-based
computers, and comment on the implications of this result.
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The rule of thumb for optimization on hierarchical memory systems is to maximize tem-
poral and spatial locality of memory references by reusing data and minimizing memory
access stride. We investigate the effects of a number of optimizations on the performance
of three related kernels taken from a computational fluid dynamics application. Timing the
kernels on a range of processors, we observe an inconsistent and often counterintuitive im-
pact of the optimizations on performance. In particular, code variations that have a positive
impact on one architecture can have a negative impact on another, and variations expected
to be unimportant can produce large effects.

Moreover, we find that cache miss rates—as reported by a cache simulation tool, and con-
firmed by hardware counters—only partially explain the results. By contrast, the compiler-
generated assembly code provides more insight by revealing the importance of processor-
specific instructions and of compiler maturity, both of which strongly, and sometimes unex-
pectedly, influence performance.

We conclude that it is difficult to obtain performance portability on modern cache-based
computers, and comment on the implications of this result.

1 Introduction. Common wisdom in high performance computing is that cost-effective
supercomputers will be based on commodity micro-processors with hierarchical (cache-based)
memory systems. The shift away from vector supercomputers and towards cache-based
distributed systems has brought about two important changes in programming paradigm.
The most well-studied is that from shared to distributed memory parallelism. Less well
recognized is the change in single-processor optimization strategies. Codes designed for
vector machines require inner-loop independence to allow vectorization, and regular, non-
power-of-two memory strides to avoid bank conflicts. Codes designed for cache-based systems
require spatial and temporal locality of data usage. A cache miss is expensive (tens of cycles)
and provokes a memory read of an entire cache line, not just the word being accessed. Good
code uses data many times while it is in cache, and also uses neighboring data, wasting none
of the cache line.



The great diversity of current processors stresses the need for portable performance; in
addition to not requiring code changes from one platform to another (portable syntaz),
programs should run efficiently on all similar architectures, e.g., on all RISC processors with
hierarchical memory systems. Syntax portability is provided by standardized languages and
libraries: C, Fortran, High Performance Fortran, MPI, etc. Performance portability appears
to follow from the above observations about cache-based systems, which translate into a
simple set of guidelines. In scientific computing, the most cache-friendly array operations
feature zero or unit stride. Moreover, loop bodies ought to be ‘fat’ (many assignments), so
that many operations are performed on cached data. If unit stride is not possible, then one
must avoid pathological strides, just as on vector computers. For cache-based systems stride
issues are more complex than for vector computers, though, due to the effects of associativity
and non-unit cache line size (see Bailey '95 [1]).

General processor and compiler considerations also motivate another class of guidelines.
For instance, most modern micro-processors are superscalar; they complete several arith-
metic operations per clock cycle, provided enough independent instructions are available.
This again argues in favor of fat loop bodies. Modern processor architectures are quite
complicated, however, and it is often believed that sophisticated compilers can perform
machine-specific optimizations unattainable by most human application programmers, for
example through loop unrolling and reordering, register optimization, software pipelining,
or prefetching.

Following the above guidelines, it seems straightforward to write code that will run
efficiently on any cache-based system. Practice tells us that the situation is more complicated.
This paper presents observations, simulations, and some analysis of performance tuning
for cache-based systems. We point out several counterintuitive results, reminding us that
memory accesses are not the only factors determining performance. Moreover, our results
indicate that compilers are not yet robust enough to trust them to perform all standard
optimizations.

We mention a few strategies for obtaining portable performance not addressed by this
paper. Vendor-optimized library routines may be useful. For instance, the Basic Linear
Algebra Subroutines (BLAS) provided by many vendors, and also through the recently pub-
lished self-tuning public-domain package PHiPAC [3], provide fast linear algebra kernels.
While appropriate for some applications, such libraries are not appropriate for others. And
even where they can be used, often substantial computation must be performed outside the
library calls. Currently available source code transformation programs (e.g. the VAST and
KAP preprocessors, supplemented with preprocessor directives) can ease some of the perfor-
mance tuning burden, in principle. But these commercial products may not be available on
all computer platforms of interest, and not all source codes are amenable to their optimiza-
tion techniques. Moreover, preprocessor directives are effectively shorthand for the actual
optimizations, and are thus no more portable than optimized source code itself. Hence, we
will not consider preprocessors or libraries and restrict ourselves to source code optimiza-
tions carried out explicitly by the application programmer. Blocking or tiling is an effective
technique for optimization on cache-based systems when many operations are performed
on each data element (much reuse). The same holds for transpose methods that reduce
stride in multi-dimensional problems. Blocking and transposition are not considered here,
because of the limited reuse exhibited by our sample problems and by many other important
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applications.

We do not attempt to explain in complete detail all performance results—although we do
probe a few examples. Rather, our intent is to examine whether intuitive source-code-level
optimization techniques work, and whether a standard set of such techniques can provide
portable performance. This is the issue of practical importance for scientific programmers
who are not experts in computer architecture and compiler design. Unlike the work by
Decyk et al. [4], however, which considers only three different architectures, our study of
nine current systems suggests that such a set is likely to be rather small, and to offer limited
universal utility.

2 Kernel code and optimizations. The starting point for our example is the SP (Scalar
Penta-diagonal) code from the NAS Parallel Benchmarks 2 (NPB 2) [2] suite. SP contains
the essential elements of a computational fluid dynamics program heavily used at NASA
Ames Research Center. It solves the Navier-Stokes equations using an Alternating Direction
Implicit scheme. SP constitutes a stress test on the memory system of the computer, since
fairly few operations per grid point are executed in any of its loops.

The most critical part of the code is the line solver, which solves systems of linear equa-
tions, one for each grid line in a 3D grid. The code boils down to solving multiple indepen-
dent, banded, penta-diagonal matrix equations using Gaussian elimination. Since there are
three families of grid lines in 3D space, there are also three different solver routines (factors).
Our three code examples, named z-, y-, and zloop, are parts (forward elimination only) of
the computational kernels of these routines. Although they have a similar structure, the
memory access patterns in the three kernels are quite different, making them a good choice
for comparing optimization strategies.

Each computational kernel solves a large number of independent penta-diagonal linear
systems, with three right hand sides for each system. The z- and yloop fragments are
shown in Appendix A. We now describe the codes in more detail. 1hs(nx,ny,nz,5) and
rhs(nx,ny,nz,3) are 4-index Fortran arrays of 8-byte real numbers. nx, ny, and nz are the
dimensions of a 3D grid on which the Navier-Stokes equations are discretized. The linear
systems for the zloop fragment are defined as follows. For fixed values j and k, 1hs(:,j,k,:)
is an nxx5 array containing the non-zero elements of a penta-diagonal matrix Aj, of size
nxxnx.2. Similarly, rhs(:,j,k,:) defines an nxx3 array By, that defines three right hand
sides. For each i and j we solve the independent systems Ajxxjx = Bjx, wWhere xj is an
nxx3 array comprising the three solution vectors. These systems are solved by Gaussian
elimination. The solution vectors xjx are not stored as a separate array, but overwrite the
values in rhs. The zloop fragment thus solves ny+nz penta-diagonal linear systems that
are defined along grid lines in the z-direction. The yloop and zloop fragments are similarly
defined, except that they solve linear systems along grid lines in the y- and z-directions. In
the notation above, this means that we consider a left hand side of 1hs (i, :,k,:) for yloop
and lhs(i,j,:,:) for zloop, and similarly for the right hand sides.

Fortran stores arrays in column-major order, so that 1hs(i, j,k,p) is adjacent in memory
to lhs(i+1,j,k,p). Thus, for zloop successive steps of the Gaussian elimination reference
elements with unit stride, while for the yloop and zloop fragments, successive steps reference

2We use Fortran 90 array notation to define submatrices of 1hs and rhs.



elements with stride nx and nxXxny, respectively. Note also that the 5 non-zero elements in
every row of every left hand side matrix are separated by a very large distance of nxsny+nz
elements.

The above description applies to the baseline code (no optimizations). Each subroutine
is executed for four grid sizes. For simplicity we always use a cubic grid (nx = ny = nz).
The four sizes are 163, 322, 643, and 80% points. The corresponding storage requirements are
just over 0.25 MB, 2 MB, 16 MB and 32 MB, respectively. A size of n is henceforth used
to indicate a grid of nxnxn points. Since pathological strides, especially powers of two, can
cause recently used data to be flushed from cache [1], we pad all array grid dimensions by
one unit. For example, 1hs is actually dimensioned lhs(nx+1,ny+1,nz+1,5).

In the subsequent analysis the baseline code is designated by the suffix 1. We then apply
a series of cumulative optimizations, indicated by suffixes 2 through 5, and two additional
optimizations, designated 6 and 7. In section 7 we describe an alternate, more radical
optimization.

All code variations contain the same number of array references and floating point oper-
ations, but they differ in the memory access patterns, and in details of the implementations.
In principle, any of the optimizations could be done automatically by the compiler, though
some, especially number 4, are largely beyond current compiler technology. We examine the
effect of each optimization on a wide range of modern processors. The optimizations are as
follows:

1. Baseline, which is now contained in NPB 2 [2].

2. Eliminate temporaries for incremented indices, i.e. replace i1 by i+1, etc. These
temporaries had originally been introduced to ease programming. Removing them
may enable better register allocation. “Good” compilers should be able to perform the
elimination automatically, and most in fact do, as we show later. This optimization
does not affect memory accesses, but we include it as a sanity check to identify compilers
so bad they cannot detect constant expressions.

3. Unroll short inner loops of fixed length (m=1,2,3). This reduces loop overhead and
register demand. Again, good compilers should be able to do this automatically, but,
surprisingly, we found that several do not. The optimization does not affect mem-
ory access patterns directly, but might affect them indirectly by making it easier for
compilers to interchange containing loops (see Section 6).

4. Move the last index of rhs and lhs—called the component index, as opposed to the
grid indices i, j, and k—to the first position. This is thought to improve spatial data
locality, since at each grid point all component indices of both arrays are referenced.

5. Unroll the first available loop not containing a recurrence (j for zloop, i for yloop and
zloop) to a level of two. This increases the number of independent computations in
the inner loop. Loop unrolling can be done automatically by a compiler, though in
this case the loop bodies are rather large. This optimization does not directly affect
memory access patterns.



Note the location of the assignment fac2 (= 1.d0/1hs(3,1,j+1,k) in zloop-5). It is
moved to the top of loop body, far ahead of the assignments that make use of fac2, to
improve possibilities for optimal scheduling by the compiler.

The above optimizations all employ the canonical loop orderings for 2-, y- and zloop:
running index k for outer, j for middle, and i for the inner loop. But it is most natural
from the application programmer’s point of view to finish a whole grid line in the inner loop
before moving to the next grid line. This leads to two additional code variations for yloop
and zloop:

6. Use j and k as the inner loop running index for yloop and zloop, respectively, while
keeping the unrollings described in optimization 5. The running index for the middle
loop in each of the two loop nests is always i. This causes large array strides in the inner
loop, which touches array elements with indices (:,1i,:,k) for yloop (and similarly for
zloop). These large strides appear bad for locality, but in the next i-iteration (next grid
line), the inner loop touches indices (:,i+1,:,k), which are adjacent. We can expect
them to be in cache if the amount of data touched in the inner loop is substantially
smaller than the cache size.

7. Again use the natural loop order (optimization 6), but undo unrolling optimization 5.

3 Machines. The cache-based systems in this study are mainly RISC processors: MIPS
R5000, MIPS R8000, MIPS R10000, DEC Alpha EV4, DEC Alpha EV5, IBM POWER2,
Sun UltraSparc I, HP PA-RISC. The one CISC architecture is the Intel PentiumPro. Almost
all processors examined here are currently used in parallel platforms: MIPS R8000 in an
SGI PowerChallenge, MIPS R10000 in an SGI Origin2000, DEC Alpha EV4 in the Cray
T3D, DEC Alpha EV5 in the Cray T3E-900, IBM POWER2 in the SP Wide Node, Sun
UltraSparc I in a workstation cluster, and HP PA-RISC in the Hewlett-Packard/Convex
Exemplar SPP2000. The PentiumPro is used in several experimental PC-based clusters,
including those at NASA Ames and Lawrence Berkeley National Laboratory.

Table 1: Processor specifications summary

Name Ll-cache |L2-cache|cache linel|associativity|CPU| Peak
KBytes | KBytes | Bytes MHz|MFlops/s
R5000 32i+-32d 0 32 2 150 300
R8000 16i+16d 4096 512 4 90 360
R10000 32i+-32d 4096 128 2 195 390
EV4 8i+-8d 0 32 1 150 150
EV5 8i+8d 96 32 3 450 900
POWER2|| 32i+256d 0 256 4 66 267
PPro 8i+-8d 256 32 4 200 200
Sparc 16i+16d 512 64 1 167 334
PA-RISC ||1024i+1024d 0 32 1 180 720
J90se N.A. N.A. N.A. N.A. 100 200
C90 N.A. N.A. N.A. N.A. 250 | 1000

For comparison we also examine two vector processors, the Cray J90se and C90. These do
not use caches for vector operations, but rely on memory banking and specialized hardware
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to provide sufficient memory bandwidth. Machine specifics are summarized in Table 1.
They reflect the modifications made to the processors to integrate them in their parallel
platforms. In particular, the DEC Alpha EV4 and EV5, as used by Cray Research in the
T3D and T3E, lost their off-chip 1.2 and L3 caches, respectively. In the T3E, the level 3 cache
is replaced stream-buffer facility developed by Cray. This special hardware automatically
detects adjacent cache misses, and prefetches the next cache line, since it is likely that the
code is accessing data with unit stride.

One of the most important system parameters, the memory bandwidth, is not listed,
because it is not directly relevant to our analysis. It is assumed that memory bandwidth
is always an active constraint on processor performance of the cache-based systems. On
all machines we select the highest acceptable level of optimization for the Fortran compiler
(generally -03). Fortran compilers supplied by the computer vendor are available for all
platforms, except the PentiumPro. On the latter system the Portland Group Fortran com-
piler release 1.6, version 1.1 is used. Other compilers are: XL Fortran for AIX, version 4.01,
on the POWER2, MIPSpro for IRIX, version 7.2, on the R10000, MIPS for IRIX, version
6.2, on the R5000 and R8000, Cray CFT77, version 6.2.3.0, on the EV4, Cray {90, version
3.0.1.1, on the EV5, WorkShop Fortran 77, version 4.2, on the UltraSparc, HP Fortran 77,
version 10.30, release V1.2.1, on the Exemplar, Cray f90, version 3.0.1.0, on the C90 and
J90.

4 Measured performance results. Performance figures for the kernel loop nests, in mil-
lions of floating point operations per second (Mflops/s), are presented in Appendix B.1. The
numerical results are supplemented by solid disks () whose magnitudes indicate the relative
performance within the set of optimizations for each factor for a particular grid size. In the
following paragraphs we point out a few highlights of the results contained in Appendix B.1.
The main finding is that optimizations have different effects for different processors, factors,
and grid sizes, so that no single choice yields portable performance. For brevity, we mention
particular idiosyncrasies only once or twice, rather than every time they appear.

MIPS R5000 (Table 6). Optimization 3 (unrolling the m-loop) yields a marked improve-
ment for the z-factor, and a smaller improvement the y- and z-factors. This feature, common
to almost all processors, is surprising, given that it should be trivial for the compiler to unroll
automatically. Optimization 4 (moving the component index) gives a substantial improve-
ment for the y-factor and less for the z-factor, but reduces performance for the z-factor. The
z-factor benefits most from optimization 6 (natural, large-stride loop ordering, as opposed
to the canonical ordering).

MIPS R8000 (Table 7). Optimization 5 (unrolling the i-loops for the y- and z-factors)
greatly deteriorates performance. We also notice the reduced processor performance for large
grids that do not fit completely in cache (sizes 64 and 80), indicating insufficient bandwidth
to main memory. Finally, we observe that the supposedly most cache-friendly z-factor code
performs more poorly than y and z.

MIPS R10000 (Table 8). The best optimization strategy is influenced by problem size.
Optimization 4 is best for small grids but is counterproductive for larger ones.

IBM POWER2 (Table 9). Moving the component index proves positive for the -
and (slightly) negative for the y- and z-factors. The best performance overall is realized
by partially unrolled, natural loop nests. This leaves unexplained why the optimal z-factor



performs disproportionately well compared to the y- and z-factors.

INTEL PENTIUMPRO 200 MHz (Table 10). The PentiumPro demonstrates great sen-
sitivity of z-factor performance to problem size and loop ordering. The natural order is
generally preferred.

DEC ArpaA EV4 (Table 11). On the DEC Alpha EV4 z-factor performance improves
by unrolling the m-loop, whereas y- and z-factor performances deteriorate under the same
code change. Moving the component index produces a dramatic increase in computational
speed for the z-factor, but a much smaller improvement for the other factors. Best perfor-
mance is obtained for partially unrolled i-loops for the y- and z-factors, but for a completely
‘rolled up’ j-loop for the z-factor.

DEC ALpPHA EV5 (Table 11). The performance of this chip is influenced by the stream-
buffer facility, which greatly favors unit stride access. Hence, the x factor performs best,
moving the component index helps significantly, and the natural loop order with large strides
does poorly. We also note that performance of the xz-factor increases with increasing problem
size, unlike all other processors (except the vector processors). Unlike a vector processor,
however, improvement is realized only for long vectors of unit stride.

SUN ULTRASPARC I (Table 13). The UltraSparc is not very sensitive to code optimiza-
tions by the user, except for the very smallest grid size that fits entirely in the cache.

HEWLETT-PACKARD PA-RISC (Table 14). Of all the processors surveyed, the PA-RISC
shows the most severe performance degradation as the problem size increases. This suggests
that the PA-RISC has the greatest imbalance between memory bandwidth and processor
speed of all systems investigated. We also notice a substantial drop in performance when
the auxiliary variables i1 and i2 in the x-factor are eliminated, whereas similar code changes
in the y- and z-factor have hardly any effect.

Table 2: Sum of number of instances of optimal performance

z-factor y-factor z-factor
optimizationno.|| 1 2 3 4 5|1 2 3 4 5 6 7 2 3 4 5 6 7
best case tally [[0 0 4 18 141 0 3 6 &8 14 4 1 4 4 2 21 4

1
| 0

Performance results are summarized in Table 2. For each processor and each factor we
count the number of grid sizes for which a particular optimization technique is superior to
all others. The table lists the sum of these numbers over all processors.

There is not a single optimization strategy that gives the best performance for all grid
sizes/factors for all processors. But even if we restrict the attention to one processor at a
time, most still do not feature a uniform optimization strategy. Only the IBM POWER2
shows consistently best performance for one single strategy (partially unrolled, natural loop
nest), although even here it is not clear whether better results could not be obtained by
undoing optimizations y/zloop-2 and y/zloop-4. The best overall optimization strategy is:
zloop-4 , yloop-6, and zloop-6. If we rule out partial unrolling, which is often considered
impractical, then the generally most acceptable single optimization strategy is: zloop-4,
yloop-4 , zloop-4 , i.e. the canonical loop ordering, and the component index as the first array
index.

For comparison purposes we also show the performance results of the kernel codes on the



Cray J90 (Table 15) and C90 (Table 16). Even though there are inner loop recurrences in
some cases, the Cray compilers always succeed in vectorizing the codes. With some minor
exceptions, code performances improve and relative performance differences are decreased as
the problem size, and hence the vector length, grows. We conjecture that the slight drop in
performance of some cases on the J90 as the problem size increases from 64 to 80 is due to the
fact that 80 is not a multiple of the hardware vector length, while 64 is. The results show that
with little or no tuning, both machines attain approximately 33% of peak performance on
the larger problems. We conclude that optimization efforts on these machines can probably
be limited to increasing vector length.

5 Cache simulations. Several of the performance results in Section 4 are unexpected, as
we find that minimizing inner loop stride does not consistently give best performance. In
particular, the beneficial effect of the natural loop ordering for the y- and z-factors for several
processors is surprising.

In this section we investigate more carefully the connection between cache miss rate
and performance. The above observation about memory access implies that the simple rule
of thumb of minimizing strides is not sufficient. More detailed knowledge and insight are
needed to design a good optimization strategy. In this section we explore whether a simple
model can improve our understanding of data locality, explain the performance results, and
guide software design. We argue that while such a model can account for cache misses, the
connection between cache miss rates and performance is weaker than is often believed, so
that the goal of portable performance remains elusive.

We use an “intuitive” model to simulate cache behavior. It is deliberately kept simple,
because its main purpose is to correct our intuition about data locality, not to provide the
most detailed description of hardware performance, compiler optimizations, etc. Moreover,
our interest is in determining a prior: programming rules for portable performance on cache-
based systems. Whereas detailed performance analysis is of interest in its own right (see
Section 6), it is not useful for devising guidelines if too many parameters are involved that
are either particular to only one or a few systems, or that are not readily quantifiable.

Other cache profiling systems, such as CProf [5] or MemSpy [6], and more general system
simulation packages, such as RSIM [7] and SimOS [8], provide more accurate details regard-
ing actual program performance. However, these tools simulate execution of assembly code,
not machine-independent source code, which means they require invocation of a compiler for
a specific platform. This type of simulation is useful for system design and performance tun-
ing of an application for a particular computer, but not for portable performance prediction.
Moreover, most detailed simulation tools require either many user inputs, or only support
certain processor families (for instance, SimOS and CProf list support only for MIPS pro-
cessors, and RSIM only for Sun SPARC V9/Solaris systems), which again limits portability
and generality.

Our simple model can be applied to all cache-based systems. Its only parameters are
the number of cache lines, the line size, and the associativity. We use it to determine cache
behavior by transforming by hand the array references in the source code to calls to the
cache simulation routines, and counting the number of cache misses as a percentage of the
total number of loads.

The model has the following features:
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— The highest level of cache (L1 or L2) is assumed the memory bottleneck. Its parameters
are used for the simulator, and referencing a data element residing in that cache level is con-
sidered a hit. Modeling other levels as well requires knowledge about the relative bandwidth
and latency between the caches, in addition to the usual parameters that characterize the
lower-level cache.

— In case of set-associative caches a Least Recently Used (LRU) replacement policy of cache
lines is employed. While LRU can sometimes lead to pathologically bad cache behavior, it
is a reproducible and usually reasonable policy.

— Memory loads are atomic, meaning that a data item in a cache line can only be used once
the whole cache line has been read from memory. We ignore sophisticated strategies such
as early restart and requested word first, since these would force differentiation among cache
misses.

— Effects of internal cache memory structure, such as interleaving, are not taken into ac-
count, since these would force differentiation among cache hits.

— We do not consider address translation. All cache addresses are determined directly from
virtual addresses, not from physical addresses, and no lookup in page tables is required.

— We assume a separate data cache, since unified caches require vastly more information
for simulation, including the assembler version of the code. Whereas this is a reasonable as-
sumption for most L1 caches (see Table 1), most L2 caches are unified (data and instructions
share the same cache). Our model effectively ignores the effects of storage of instructions in
cache memory.

— Only memory loads are modeled. The structure of the computational loops in the kernel
code is such that stores are always done to memory locations that are already in cache, which
means that no cache lines need to be flushed to accommodate write operations. We ignore
the effects of writing through the cache to main memory.

— Loads are ordered canonically, meaning that calls to the cache simulation load routines are
inserted in the order in which array references occur in the source code. This precludes out-
of-order execution, and also ignores other possible compiler optimizations that are impossible
to anticipate without inspecting the assembler code.

— The number of registers is assumed large enough to accommodate all scalars occurring in
the kernel code, so that their storage does not compete for space in the data cache.

Note that our cache model is similar to that used in the loop nest interface of the Cache
Visualization Tool [10], except that CVT models only direct-mapped caches. Relative array
base addresses are fixed by placing rhs and lhs in a common block, separated by a spacer
of known size.

We report here the results of simulations of a subset of the optimizations: 3, 4, and 7.
This subset encompasses the major differences in memory access patterns. Optimizations
1, 2, and 3 have identical memory reference patterns (according to our simulation rules and
intuition); we only present results for 3. Optimizations 5 and 6 correspond to 4 and 7,
respectively, except for the partial loop unrolling. Our simulations show that the latter has
a negligible effect on array reference patterns and cache misses, so we only present figures
for 4 and 7.

Results of the simulations are contained in Appendix C. Each table shows the percentage
of array references (loads) that cause cache misses for the optimizations described in Section
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2 and presented in Appendix A.1. Symbols are applied in the same fashion as in the tables
in Appendix B.1: the larger the ring (@), the fewer the cache misses.

We expect a smaller percentage of cache misses to result in faster code. If an optimization
results in fewer cache misses and higher performance than another, we say there is a positive
correlation between simulation and measured performance. In the following we focus on
large changes in cache miss rate or performance, and, as before, limit our discussion to the
more striking examples. Our overall finding is that sometimes cache miss rates do correlate
positively with performance, and sometimes they do not. In other words, even a sharpened
attention to cache behavior does not result in achieving portable performance.

MIPS R5000 (Table 28). Cache misses and performance are relatively well correlated.
For instance, performance increases and cache misses decrease for zloop-4,3,7 and yloop-3,7,4.
Cache behavior also explains the increase in performance with larger grid sizes for zloop, and
the mixed results with larger sizes for yloop and decreased performance with larger sizes for
zloop (except for zloop-7). On the other hand, cache behavior does not explain everything,
such as the dramatic increase in performance from yloop-3 to yloop-4 for the smaller two
problems.

We note that the number of cache misses for the z-factor is slashed in three—somewhat
unexpectedly—by using the natural loop ordering. This is reflected in a better performance.

MIPS R8000 (Table 29). This processor features a very small miss rate (less than 1%),
due to the large size of the L.2 cache. The large performance differences between the factors,
particularly for the smaller grid sizes, is not explained by differences in .2 cache misses. A
more likely explanation is that for problems that fit inside L2 cache, it is L1 cache misses
that determine performance.

MIPS R10000 (Table 30). For small grid sizes we observe no correlation, and in fact
for a grid size of 32 there is a negative correlation. For the larger sizes, modest changes in
performance are not reflected in the cache miss rate.

IBM POWER2 (Table 31). Generally speaking, variations in cache misses and per-
formance are relatively small, though the two are not well correlated. Where there is the
largest variation in cache miss rate (zloop), performance correlates negatively. Conversely,
the virtually uniform distribution of cache miss rates for zloop is accompanied by the largest
variations in measured performance.

INTEL PENTIUMPRO 200 MHz (Table 32). For the largest problem size correlation
appears quite good—fairly uniform performance for the z- and y-factors, and widely varying
performance with high correlation for the z-factor. For the smallest case, again we see
uniformity in the z- and y-factors, but note that cache misses are uniform for the z-factor,
while performance shows the same dramatic swings as for the large grid size. This casts
doubt upon the significance of the z-factor correlation for the largest size.

DEC ArLpHA EV4 (Table 33). Cache misses fail to predict the large performance vari-
ation within the z-factor, and are only moderately correlated elsewhere.

DEC ArprHA EV5 (Table 34). A reduction in cache misses of up to a factor of 3 for the
larger grids of the z-factor by switching to the natural loop ordering has no or no positive
effect on the performance. All factors show widely varying performance figures for virtually
identical numbers of cache misses (grid size 16).

SUN ULTRASPARC I (Table 35). Performance of the UltraSparc for small grids (16) varies
significantly, especially for the z-factor, although the problem fits entirely in the cache, and
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no misses occur (see Table 35). For larger grids the number of cache misses varies significantly
for the z-factor, but this is not correlated with performance.

HEWLETT-PACKARD PA-RISC (Table 36) . The most salient feature of the simulated
cache behavior of the PA-RISC is the strong negative correlation between measured perfor-
mance and number of cache misses of the z-factor for large grids.

In summary, the simulated cache behavior for the processors studied correlates poorly
with the actually observed performance, confirming the conclusion from the previous section
that simple rules taking into account a hierarchical memory structure are not sufficient to
ensure portable performance. Most strikingly, the smaller grid sizes fit entirely in the L2
caches of some processors, but observed performances for the various optimizations differ
substantially. Less dramatic, but equally vexing, is the negative correlation between mea-
sured performance and calculated cache misses for the y-factors on the PentiumPro, DEC
Alpha, Sun UltraSparc and IBM POWER2. Finally, we also observe that measured per-
formances of optimizations 1, 2, and 3 for all factors vary significantly, although the array
reference patterns for these code variations are identical.

It can be argued that these discrepancies are due to the limitations of the simulator—
perhaps better termed a data locality estimator—and that better correlations can be ob-
tained by incorporating more detailed characteristics of the particular machines. But we
are interested in producing portable code, and introducing even more information into the
program construction will make this task virtually impossible. In addition, the validity of
the cache simulator is corroborated by program run-time statistics obtained from hardware
performance counters on the IBM POWER2 and the MIPS R10000. Although on both ma-
chines the numbers of simulated cache misses overpredict the actually measured numbers,
the correlation between the two is higher than 95%.

We also observe that there is significant—and nontrivial-—dependence of the processor
performance on the problem size, which is generally not known at compile time. We do
note that on several processors the unexpected beneficial effect of using the natural loop
ordering for the z-factor is borne out by the simulations. However, the data locality of the
simple pieces of code investigated in this paper is generally a rather complex function of loop
organization, problem size, and cache structure, even if only very few parameters are used
to describe the cache.

6 Performance details. Clearly, it is impossible to explain the performance of the kernel
codes by only examining the source text, even when our intuition about data locality has
been improved through the use of a cache simulator. In order to understand better why
this is, and to gain appreciation of the factors that do govern performance, we examine the
generated assembly code for some of the processors in more detail. Through this detailed
analysis we are able to explain almost all significant variations in performance. While it
is gratifying to know that much can be explained, the reliance on compiler- and processor-
specific details means that the goal of portable performance cannot be achieved.

The selected processors are the MIPS R8000, IBM POWER2, and DEC Alpha EVA4.
Each has 32 integer and 32 floating-point general-purpose registers, plus a small number of
special-purpose registers. The MIPS and IBM processors feature a combined floating-point
multiply/add (madd) instruction, which is missing from the DEC Alpha instruction set. All
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kernel code assignments written as a combination of an addition (or subtraction) and a mul-
tiplication are correctly recognized as madds by the MIPS and IBM compilers. In addition,
the IBM processor is capable of loading or storing two double-precision numbers (occupying
four 32-bit words, hence the names quad load and quad store) in a single instruction. The
memory buses of the MIPS and DEC Alpha processors, in contrast, are only 64 bits wide,
and do not accommodate quad loads or stores. Finally, the IBM instruction set features
an address mode (called the update mode) that allows simultaneous update and use of the
contents of a register. This mode, which saves on the number of register manipulations, is
absent from the MIPS and DEC Alpha instruction sets.

In Tables 3, 4, and 5, we summarize numerically the characteristics of the generated
assembly codes. The quantities load and store refer to the number of memory operations
carried out for each point of the grid. For the POWER2 we indicate, in parentheses, how
many of the loads and stores are quad operations. For the EV4 we show, also in parentheses,
how many of the loads and stores are between registers and stack variables (as opposed
to array variables in main memory). Since stack variables are only few and, presumably,
remain in cache for the duration of the kernel code execution, such loads and stores are less
costly than those of array variables. The R8000 and POWER2 inner loops have no stack
loads or stores. Instr signifies the total number of assembly instructions per grid point,
and sep indicates the separation, or delay, between issuing the computationally expensive
division instruction and using the result. A sep(aration) of 1 means that the instruction
immediately following the division makes use of the result. This delay can be important
when the processor allows other instructions following the division to be carried out before
the division completes. Note that we do not take into account that instructions may have
different lengths (and, consequently, different costs), depending on their address mode. For
the determination of the above four numerical parameters we ignore any operations that
are not in the inner loop. We note that none of the compilers investigated recognizes the
possibility of postponing writing array elements back to memory (storing) until operations
on them have been completed (see Section 7).

MIPS R8000. The MIPS compiler uses loop replication and pipelining as the most
important vehicle for code optimization. This technique has the potential to reduce the
number of loads (through reuse among different iterations), and to increase the division
separation (through reordering of statements), at the cost of pipeline overhead and the danger
of register spill due to the replication. Only innermost loops are pipelined, and only if they
are of sufficient depth to justify the overhead. This disqualifies the small m-loops, which
need to be unrolled before pipelining can proceed. The MIPS compiler automatically unrolls
the first m-loop of the loop body (i.e. rhs(i,j,k,m) = facl*rhs(i,j,k,m), m=1,2,3), but
leaves the other two unchanged. The recursion in i for the z-factor prevents the inner
loop from being split without loop reordering, and no pipelining is performed at all. This
explains the relatively poor performance of zloop-1,2. Once all m-loops are unrolled by hand
(zloop-8), the inner loop is replicated three times (in the i-direction) and fully pipelined,
leading to a greatly reduced number of loads and instructions, and a substantial increase of
the division separation. The resultant performance improvement is roughly a factor of two
for all grid sizes. Changing the position of the component index (zloop-4) has hardly any
effect on the structure of the compiled code. Performance also remains effectively the same.
Unrolling the i-loop by a factor of two (zloop-5) renders the loop body too large for the

14



Table 3: MIPS R8000 Table 4: IBM POWER2 Table 5: DEC Alpha EV4

load store instr sep load store instr sep load store instr sep
x-1{ 32 ] 15 [100] 2 x-1[30(2%)] 15 72 |22 x-1[37(4%)[21(6%)[ 128 | 6
x-2| 32 | 15 [100 | 2 x-2(30(2%)| 15 70 | 18 x-2(37(4%)|21(6%)| 128 | 6
x-3| 13 | 15 | 46 |30 x-3|27(5%)| 15 59 |24 x-3| 27 15 80 |13
x-4| 13 | 15 | 47 |31 x-4(13(7%)| 8(7%) | 37 | 8 x-4| 17 15 | 62 |11
x-5| 32 | 15 | 66 |33 x-5(13(7%)| 8(7%) | 37 |19 x-5| 17 15 62 |33
y-11 32 [ 15 | 79 [40 y-1] 32 15 74|17 y-1 30 15 [ 126 | 3
y-2| 32 | 15 | 79 |40 y-2| 32 15 76 |13 y-2| 30 15 [126 | 3
y-3| 18 | 156 | 51 |60 y-3| 32 15 64 |21 y-3| 30 15 96 |19
y-4| 17 | 15 | 51 |61 y-4122(6%)[13(2%)| 52 |12 y-4| 24 15 7 | 4
y-5| 32 | 15 | 68 |15 y-5(22(6%)[13(2%)| 51 |29 y-5| 24 15 70 |31
y-6| 32 | 15 | 68 |15 y-6[17(3%)|13(2%)| 50 |17 y-6| 23 15 69 |29
y-7| 18 | 15 | 51 |61 y-7120(6%)[13(2%)| 50 | 5 y-7| 23 15 74 | 4
z-1/30 [ 15 | 93 | 3 z-1| 32 15 74 |17 z-1| 36 15 126 | 3
z-21 30 | 15 | 92 | 3 z-2| 32 15 76 |13 z-2| 36 15 126 | 3
z-3| 17 | 15 | 50 |59 z-3| 32 15 64 |22 z-3133(3%)| 15 96 |19
z-4| 18 | 15 | 52 | 62 z-4122(6%)[13(2%)| 52 |12 z-4| 24 15 7| 4
z-5| 35| 15 | 68 |15 z-5(22(6%)[13(2%)| 51 |29 z-5| 24 15 70 |31
z-6| 35| 15 | 68 |15 z-6120(6%)[13(2%)| 50 |34 z-6| 23 15 74 129
z-7| 18 | 15 | 52 |62 z-7120(6%)|13(2%)| 50 | 5 z-7| 23 15 73 | 4

*quad load/store ?stack load/store

compiler to optimize, and no pipelining is done. The number of loads goes up again, but the
absence of m-loop overhead and the programmer-induced increased division separation keep
the performance from deteriorating precipitously.

In case of the y-factor, the compiler again fails to unroll the second and third m-loops
(yloop-1,2). But because the inner grid loop runs over points in the i-direction and the
recursion is in the j-direction, the inner loop can be split into four independent loops, each
of which is optimized separately. The two that only contain an m-loop are subjected to loop
inversion, so that the innermost loops have i as the running variable. This allows these loops
to be replicated (in the i-direction) and pipelined, which increases the division separation.
Moreover, m-loop overhead is moved out of the inner loop, leading to a noticeable reduction
of the number of operations compared to zloop-1,2. As a consequence, yloop-1,2 perform
significantly better than their z-factor counterparts. The two inner loops that do not contain
m-loops are replicated and pipelined directly. This yields no additional gain, since splitting
the i-loop prevents reuse among and within iterations; the total number of loads is the same
as for the z-factor. Unrolling the m-loops by hand (yloop-3) enables the compiler to replicate
and pipeline the entire inner loop directly, further increasing the division separation. The
number of loads (and hence the number of instructions) is sharply decreased because of reuse
of 1hs array elements within the single loop body. Notice that the division separation is much
larger than for the corresponding z-factor code. This is because the result of the division is
now not needed by the next iteration of the inner loop. As a consequence, performance is
improved substantially. Changing the position of the component index (yloop-4) leaves the
structure of the compiled code and the performance again virtually unchanged. When the
inner loop is unrolled by hand by a factor of 2 (yloop-5), the loop body is again too complex
for the compiler to optimize, and no pipelining is done at all; strangely, even though the
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expensive divisions are scheduled together at the top of the inner loop by the programmer,
creating the opportunity to increase division separation for the second iteration, the compiler
moves the second division down to the start of its ‘own’ iteration. This reordering limits
the division separation and degrades performance to a level well below that of zloop-5.
Inverting the loops to reflect the natural loop order (yloop-6,7) is undone by the compiler,
which recasts these kernel codes to exhibit the canonical loop order. Consequently, structure
and performance of these compiled codes are identical to those of yloop-9,4, respectively.

The same transformations applied to yloop-1,2 could have been used to optimize zloop-
1,2, but are not found by the compiler. Instead, the j-loop is broken into only three indepen-
dent parts. The first contains the expensive division as well as a non-expanded m-loop. This
combination of instructions inhibits loop inversion and pipelining. Although the other two
loops are again replicated and fully pipelined, the poor optimization of the first loop leads
to a relatively large number of instructions and a very small division separation, thus ex-
plaining the bad performance of these kernel codes. Unrolling the m-loops by hand (zloop-8)
enables the full range of optimizations applied also to yloop-3, with concomitant perfor-
mance improvement. As before, moving the component index (zloop-4) affects neither the
structure of the compiled code, nor its performance. As in yloop-5, the unrolled loop body
of zloop-5 is too large to pipeline, and again the compiler migrates the division operation,
to the detriment of the division separation. When the natural loop order is adopted, the
compiler again attempts to reduce stride by recasting the loop nest, but instead of reverting
to the canonical loop order (i.e. k for outer, j for middle, and i for innner loop running
indices), the resulting loop nest is j-k-i. Apparently, this does not affect performance much.
Performance of the fat, non-pipelined zloop-6 code is on a par with that of yloop-6. Zloop-7
and yloop-7 compare similarly.

IBM POWER2. Unlike the Cray (see below) and MIPS compilers, the IBM compiler
always recognizes and expands the short m-loops to avoid unnecessary branch instructions.
It also pipelines each inner loop to reduce memory operations and increase division separa-
tion. Once the m-loops are unrolled by hand (z,y,zloop-3), the compiler has an easier job
recognizing access and dependency patterns, and for all three factors the number of instruc-
tions decreases while the division separation goes up. Performance improvement is greatest
for the z-factor, since now the compiler also recognizes the possibility of utilizing array ele-
ments adjacent in memory, and reduces the number of load operations by issuing some quad
loads. Increased locality of memory reference is obtained by moving the component index
(z,y,zloop-4 ), which enables quad loads as well as quad stores for all factors, thus reducing
the number of memory operations as well as the total instruction count. However, although
the code is still fully pipelined, for some reason the compiler now fails to unroll the inner
loop (so far, each was unrolled automatically by a factor of two in the i-direction), which
limits the division separation. As a result, the net performance improves only noticeably
for zloop-4, not y,zloop-4, because the z-factor experiences the sharpest reduction of the
number of memory operations due to quad load/stores. Unrolling the inner loop by hand
by a factor of two (z,y,zloop-5) restores the division separation for all three factors while
leaving other parameters virtually unchanged, and performance improves commensurately.

Reverting to the natural loop order reduces the number of loads for the y-factor, but the
division separation also decreases, so it is not clear why performance of yloop-6 improves. For
the z-factor the number of loads as well as the division separation are affected favorably by
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the natural loop order, and the number of cache misses is reduced by a factor of three for the
larger grid sizes, which explains the improved performance of zloop-6. Undoing the partial
unrolling of the i-loop leads to a substantial reduction of the division separation, and, for the
y-factor, also to an increase in the number of loads; as expected, the performance of y,zloop-7
deteriorates. Overall, performance of the z-factor on the POWER2 is significantly better
than of the y- and z-factors. Data locality alone does not provide sufficient explanation.
What matters also is the type of locality, namely adjacency.

DEC ArpHA EV4. Unlike the MIPS and IBM compilers, the Cray compiler never
replicates or pipelines the kernel code loops automatically, and hence has fairly little control
over division separation and number of memory operations. Xloop-1,2, which yield virtually
identical assembly code, fare poorest. Like MIPS, the Cray compiler expands the first m-
loop, but leaves the others untouched. Because the inner grid loop contains a recurrence, it
cannot be split, and is left virtually unchanged by the compiler. Many register spills occur,
and even the loop constant 3, used for the short m-loops, is read from the stack several
times. In addition, there are redundant loads of unchanged values. Apparently, the compiler
made only very minor attempts at optimization, resulting in large numbers of instructions
and memory operations, small division separation, and bad performance. When the m-loops
are unrolled by hand (zloop-3), loop overhead is cut, also leaving more registers available,
so fewer spills occur. Some reordering of statements takes place, and the compiler issues
loads further ahead, which leaves more time for data to be fetched and also increases the
division separation. Moving the component index (zloop-4), however, yields a much bigger
performance improvement, which is due to the large reduction of the number of loads and
the total number of instructions. The reason for this is that address calculations are now a
lot simpler. When the component index is the last array index, 8 integer registers are used to
keep track of the 5 elements of 1hs and 3 of rhs at each grid point, since these are separated
by large strides, the sizes of which are unknown at compile time. These registers need to
be updated every iteration (recall that the EV4 lacks an update address mode), resulting
in significant overhead. Moreover, due to the large number of registers used, bookkeeping
is relatively complicated, and the compiler issues several redundant loads. By contrast,
when the component index is first, only two integer registers are required to keep track of
all local elements of 1hs and rhs. All other addresses are obtained using small (24 or 40
bytes), fixed-size offsets. Moreover, due to the simple structure of the resulting code, the
compiler is able to eliminate all redundant loads, which leads to a very streamlined, short
program. Partially unrolling the j-loop (zloop-5) leaves that structure intact and increases
the separation division, but the number of cache misses also increases, and performance goes
down.

Both yloop-1,2 and zloop1,2 permit splitting the inner i-loop, which the compiler does
correctly. It also employs loop inversion, so that the m-loops are no longer in the inner loop,
and loop overhead is cut. The smaller number of instructions and substantially reduced
number of loads makes the y-factor perform more than 50% better than the z-factor. The
z-factor sheds fewer loads, and its performance improves less, compared to the z-factor.
When the m-loop is expanded by hand (y,zloop-3), the number of memory operations, total
number of instructions, and division separation all improve or stay the same, but performance
degrades nonetheless. True performance improvement is brought about by the change of
position of the component index (y,zloop-4), which results in a sizeable reduction of number
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of loads and total instruction count. Despite the fact that the cache miss rate goes up and
the division separation goes down, performance improves. Apparently, either divisions are
relatively cheap on the EV4, or delayed instruction completion is not possible, as partially
unrolling the i-loop (y,zloop-5) keeps the structure and properties of the assembly code
the same, save a substantial increase of the division separation, but performance declines
somewhat. Adopting the natural loop order (y,zloop-6) cuts the cache miss rate in half,
improving performance substantially. Finally, undoing the partial unrolling (y,zloop-7) makes
the cache miss rate grow slightly and decreases the division separation, neither of which
appears significant enough to explain the fairly steep drop in performance.

7 Alternate optimizations. The optimizations of the kernel code presented in Section 2
affect mainly loop structure, but leave the number of array references unchanged. Here we
present an alternate optimization strategy, due to Taft [9], that aims to reduce the number
of array references. It is based on the following observations. In every iteration three
successive rows of the pentadiagonal matrix and the corresponding three triplets of right
hand side values are read and modified. Several of the matrix elements are accessed multiple
times. When the inner loop corresponds to the line solve direction (natural loop order), the
first two of the three rows accessed in the next iteration coincide with the current triplet.
The number of array references can therefore be reduced by storing triplets of rows in a
‘moving window’ of scalar variables. After the window has been initialized at the beginning
of the grid line, all that is required to move the window between iterations is to read one new
matrix row from memory and store back the elements of the first row that have changed.

If enough registers are available, all operations on the window of scalars can take place
entirely in registers. If not, the spilled scalars will reside in fixed positions on the stack, and
all window data will likely remain in cache; no new reads from main memory are necessary
after each new matrix row has been stored in scalar variables. Good compilers already
recognize some reuse of array elements within a single iteration and store them in registers,
but fairly substantial transformations are required to take full advantage of reuse across
several iterations. This is evidenced by the complexity of source code employing the scalar
window (Appendix A.2).

Performance results (Mflops/s) are tabulated in Appendix B.2. Since the scalar win-
dow applies only to the natural loop ordering, optimizations 1-5 for yloop and zloop are
not displayed. We also omit optimizations zloop-1,2, so that the entire inner loop can be
written in scalar operations (no m-index loops). We observe several appreciable performance
improvements (up to 20%) over the kernel codes, especially for the z-factor on the PA-RISC
(large grids) and the R8000, the y-factor on the PA-RISC (large grids), the UltraSparc (small
grids) and the POWER2, and the z-factor on the PA-RISC (medium grids), the UltraSparc
(small grids), and the POWER2 and EV5. But there are also dramatic performance degra-
dations (up to 50%) for the z-factor on the EV4, the y-factor on the R8000 and EV5, and
the z-factor on the R8000 and R10000 (large grids). Consequently, this code variation again
cannot be recommended as a portable optimization technique for cache-based systems. As
expected, the vector machines do not benefit at all from the scalar window optimizations.

8 Conclusions. We have studied the behavior of variations of pieces of scientific computing
software on a wide range of current cache-based processors. Seemingly reasonable source

18



code optimizations often did not yield higher speed, even when cache simulations indicated
they would. Moreover, the same “optimization” often had very different consequences for
performance on different processors.

Our goal was to find out whether it is feasible to achieve portable performance on com-
puters with hierarchical memory systems. Our conclusion is that it is not. We found instead
that many performance fluctuations could be understood only by examining assembly code
in detail, and ultimately these fluctuations were related to idiosyncrasies of architectures
and compilers.

Tuning codes for high performance on commercial cache-based processors available today
is a process that requires so much knowledge and information about the entire configuration
of user program, problem parameters, system software, and hardware organization, that it
is in general difficult or impossible to write good, portable cache code for general scien-
tific applications. By this we mean that it is not possible to tell whether a program will
perform well by studying the source code and a few high-level parameters of the system un-
der consideration. This contrasts sharply with our experiences on vector processors, where
the well-understood effects of vectorizability, regular stride, and long vector length virtually
completely govern performance. We note also that compilers are often not as sophisticated
and mature as is commonly believed. Many still fail to perform automatically even trivial
optimizations.

Generic optimization strategies designed to take advantage of cache by increasing data
locality do not alone yield high performance. Other factors, such as software pipelining,
compiler structure and maturity, (relative) instruction cost, number of registers, and special
memory and address instructions, need to be considered as well when designing efficient
codes, but this will hamper portability of codes between architectures.
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Appendix A: Source codes.

Source listings of the SP solver fragments used in the performance tests; only the forward
elimination parts of the penta-diagonal line solvers are used. For each of the three factors
to be inverted in the ADI scheme (corresponding to the z-, y-, and z-directions), the same
optimizations are performed for corresponding suffixes. For example, zloop-3, yloop-3 and
zloop-8 all unroll inner loops of length three. Italic typeface is used to indicate which parts
of the code fragments are affected by the current optimization.

A.1l: Kernel codes

All code fragments use standard (indexed) array references throughout. zloop-1, yloop-1 and
zloop-1 are the actual loops used in NPB 2. Here we only show zloop-1 through zloop-5,
yloop-6, and yloop-7. The other code fragments are easily inferred.

zloop-1: NPB 2.2 code
do 2 k=1,nz
do 2 j=1,ny
do 2 i=1,nx-2
il=i+1
i2=i+2
facl =1.d0/1hs(i,j,k,3)
lhs(i,j,k,4)=facl*lhs(i,j,k,4)
lhs(i,j,k,5)=facl*lhs(i,j,k,5)
do 5 m=1,3
rhs(i,j,k,m)=facl*rhs(i,j,k,m)
5 continue
1hs(il,j,k,3)=lhs(i1,j,k,3)-

> 1hs(il,j,k,2)*1hs(i,],k,4)
1hs(il,j,k,4)=lhs(il,j,k,4)-
> 1hs(il,j,k,2)*1hs(i,],k,5)
do 8 m=1,3
rhs(il,j,k,m)=rhs(il,j,k,m)-
> 1lhs(il,j,k,2)*rhs(i,j,k,m)
8 continue
lhs(i2,j,k,2)=1hs(i2,j,k,2)-
> 1lhs(i2,j,k,1)*1hs(4,j,k,4)
lhs(i2,j,k,3)=1hs(i2,j,k,3)-
> 1hs(i2,j,k,1)*lhs(i,j,k,5)
do 2 m=1,3
rhs(i2,j,k,m)=rhs(i2, j,k,m)-
> 1hs(i2,j,k,1)*rhs(i,j,k,m)

2 continue

zloop-2: remove auziliary wvariables for incre-
mented indices
do 2 k=1,nz
do 2 j=1,ny
do 2 i=1,nx-2
fac1 =1.d40/1hs(i,j,k,3)
lhs(i,j,k,4)=facl*lhs(i,j,k,4)
lhs(i,j,k,5)=facl*lhs(i,j,k,5)
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do 5 m=1,3

rhs(i,j,k,m)=facl*rhs(i,j,k,m)
5 continue

lhs(i+1,j,k,3)=1lhs(i+1,],k,3)-

> 1hs(i+1,5,k,2)*1hs(i,],k,4)
1hs(i+1,j,k,4)=1hs(i+1,5,k,4)-
> 1hs(i+1,j,k,2)*1hs(i,],k,5)

zloop-3: unroll small inner loops of length 3
do 2 k=1,nz
do 2 j=1,ny
do 2 i=1,nx-2
facl =1.40/1hs(i,]j,k,3)
1lhs(i,j,k,4)=facl*lhs(i,j,k,4)
1lhs(i,j,k,5)=facl*lhs(i,j,k,5)
rhs(i,5,k,1)=facl *rhs(i,j,k,1)
rhs(i,5,k,2)=facl *rhs(i,j,k,2)
rhs(i,5,k,3)=facl *rhs(i,j,k,3)
1hs(i+1,j,k,3)=1hs(i+1,],k,3)-

> lhs(i+1,j,k,2)*1hs(i,],k,4)
1hs(i+1,j,k,4)=1hs(i+1,],k,4)-

> 1hs(i+1,3,k,2)*1hs(i,],k,5)
rhs(i+1,j5,k,1)=rhs(i+1,5,k,1)-

é lhs(i+1,5,k,2) *rhs(i,j,k,1)
rhs(i+1,5,k,2)=rhs(i+1,5,k,2)-

é lhs(i+1,5,k,2) *rhs(i,5,k,2)
rhs(i+1,5,k,8)=rhs(i+1,5,k,3)-

é lhs(i+1,5,k,2) *rhs(i,5,k,3)

zloop-4: move component index of rhs/lhs to front
do 2 k=1,nz
do 2 j=1,ny
do 2 i=1,nx-2
facil =1.40/1hs(3,1,j,k)
lhs(4,1i,],k)=facl*lhs(4,i,j,k)



lhs(5,i,j,k)=facl*1hs(5,i,j,k) do 2 j=1,ny-2
rhs(1,i,j,k)=facl*rhs(1,i,j,k) facil =1.d40/1hs(3,1i,j,k)
rhs(2,1i,j,k)=facl*rhs(2,i,j,k) fac2 =1.d0/1hs(3,i+1,j,k)
lhs(4,i,j,k)=facl*lhs(4,i,j,k)
1lhs(5,i,j,k)=facl*lhs(5,i,]j,k)

zloop-5: unroll j-loop to o level of 2 rhs(1,i,j,k)=facl*rhs(1,i,j,k)
do 2 k=1,nz rhs(2,1i,j,k)=facl*rhs(2,i,j,k)
do 2 j=1,ny, 2 e
do 2 i=1,nx-2 lhs(4,i+1,j,k)=fac2*1lhs(4,i+1,]j,k)
facl =1.d40/1hs(3,1,j,k) 1hs(5,4+1,j,k)=fac2*lhs(5,i+1,j,k)
fac?2 =1.d0/1hs(3,1i,j+1,k) rhs(1,i+1,j,k)=fac2*rhs(1,i+1,j,k)
lhs(4,i,j,k)=Ffaci*lhs(4,i,j,k) rhs(2,i+1,j,k)=fac2*rhs(2,i+1,j,k)

lhs(5,i,j,k)=facl*lhs(5,i,j,k)
rhs(1,i,j,k)=facl*rhs(1,i,j,k)

rhs(2,i,j,k)=facl*rhs(2,i,j,k) yloop-7: natural loop order, rolled-up i-loop
e do 2 k=1,nz
lhs(4,i,j+1,k)=fac2*1lhs(4,i,j+1,k) do 2 i=1,nz
lhs(5,1i,j+1,k)=fac2*1hs(5,i,j+1,k) do 2 j=1,ny-2
rhs(1,i,j+1,k)=fac2*rhs(1,i,j+1,k) facl =1.d40/1hs(3,1i,j,k)

rhs(2,i,j+1,k)=fac2*rhs(2,1,j+1,k) lhs(4,i,j,k)=facl*lhs(4,i,j,k)
cenn 1lhs(5,i,j,k)=facl*lhs(5,i,j,k)
rhs(1,i,j,k)=facl*rhs(1,i,j,k)
yloop-6: natural loop order, i-loop unrolled to level 2 rhs(2,1,j,k)=facl*rhs(2,i,],k)

do 2 k=1,nz
do 2 i=1,nz,2

A.2: Scalar window codes.

Only optimization z-7 (natural loop order) is shown. The code fragment employs a window
of scalars that holds three rows of the pentadiagonal matrix and the corresponding three
triplets of right hand side values.

zloop-T: natural loop order, rolled-up i-loop 1lhsbkp2 = 1lhs(5,i,j,3)

do 2 j=1,ny rhsikp2 = rhs(1,1i,3,3)

do 2 i=1,nx rhs2kp2 = rhs(2,1i,j,3)
'initialize scalar window (3 matrix rows rhs3kp2 = rhs(3,1,j,3)
1hs3 = 1lhs(3,i,j,1) !start actual iterations
lhs4 = lhs(4,i,j,1) do 2 k=1, nz-2
1lhsb = 1lhs(5,i,j,1) facl = 1.d0/1hs3
rhsl = rhs(1,1,j,1) lhs4 = facl*lhs4
rhs2 = rhs(2,1,j,1) 1lhsb = facl*1lhsb
rhs3 = rhs(3,1i,j,1) rhsl = faclxrhsi
1lhs2kpl = 1hs(2,i,j,2) rhs2 = facl*rhs?2
1lhs3kpl = 1hs(3,1i,j,2) rhs3 = facl*rhs3
lhs4kpl = 1lhs(4,i,j,2) 1lhs3kpl = lhs3kpl-1lhs2kpl*1lhs4
lhsbkpl = 1hs(5,i,j,2) lhs4kpl = lhs4kpl-1lhs2kpl*1hsb
rhslkpl = rhs(1,i,j,2) rhs1kpl = rhslkpl-1hs2kpl*rhsl
rhs2kpl = rhs(2,i,j,2) rhs2kpl = rhs2kpl-1hs2kpl*rhs?2
rhs3kpl = rhs(3,1i,j,2) rhs3kpl = rhs3kpl-1hs2kpl*rhs3
1hsikp2 = 1hs(1,i,j,3) 1hs2kp2 = 1hs2kp2-lhsikp2%lhs4
1lhs2kp2 = 1hs(2,i,j,3) 1lhs3kp2 = lhs3kp2-1lhslkp2+*1hsb
1lhs3kp2 = 1hs(3,i,j,3) rhs1kp2 = rhslkp2-1lhsikp2*rhsi
lhs4kp2 = 1hs(4,i,j,3) rhs2kp2 = rhs2kp2-1lhsilkp2*rhs?2
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rhs3kp2 = rhs3kp2-lhslkp2*rhs3

lwrite 1 matrix row (updated elmts only

lhs(4,i,j,k) = 1lhs4
lhs(5,i,j,k) = 1lhsb
rhs(1,i,j,k) = rhsl
rhs(2,i,j,k) = rhs2
rhs(3,1i,j,k) = rhs3
!move window of scalar temporaries
1hs3 = lhs3kpl

1lhs4 = lhs4kpl

1hsb5 = lhsbkpl

rhsl = rhsikpl

rhs2 = rhs2kpl

rhs3 = rhs3kpl
1hs2kpl = 1lhs2kp2
1lhs3kpl = 1lhs3kp2
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1lhs4kpl
1hsbkpl
rhsikpl
rhs2kpl
rhs3kpl

1lhs4kp2
1hs5kp2
rhs1kp2
rhs2kp2
rhs3kp2

'read new matrix row

1lhs1kp2
1hs2kp2
1hs3kp2
1hs4kp2
1hsbkp2
rhsikp2
rhs2kp2
rhs3kp2
2 continue

1hs(1,1,],k+3)
1hs(2,1,],k+3)
1hs(3,i,]j,k+3)
1hs(4,1,],k+3)
1hs(5,1,],k+3)
rhs(1,i,j,k+3)
rhs(2,i,j,k+3)
rhs(3,1,j,k+3)



Appendix B: Measured computational performance (Mflops/s).

B.1: Kernel code performance.

Table 6: MIPS R5000
grid size

x-1
Xx-2
x-3
x-4
x-5
y-1
y-2
y-3
y-4
y-5
y-6
y-7
z-1
7-2
z-3
z-4
7-5
7-6
z-7

Table 9:

z-1

z-7

16

32

64

80

8.34
8.73 e
14.0@
17.2@
17.5@

8.70 ¢
9.10
15.2@
18.3@
18.7@

8.86 ¢
9.25¢
15.8@
18.9@
19.3@

8.71e
9.09 -
16.3@
19.0@
19.5@

7.95¢
8.09 ¢
11.8e
15.0@
15.7@
15.8@
15.2@

8.20
8.34 e
12.5@
16.0@
17.0@
17.1@
16.4@

8.30 ¢
8.42 ¢
12.8e
16.5@
17.6@
16.3@
14.9e@

7.05¢
7.15¢
9.87e
16.5@
17.7@
16.6@
15.6@

6.69 o
6.71 ¢
9.76e
7.54
7.58
13.2@
12.4@

16

6.12
6.14 ¢
8.37e
7.04e
7.05e
12.7@
11.1e@

6.04 «
6.05
8.46e
6.90
7.10e
12.2@
10.7@

6.00 «
6.01 e
8.29e
7.0le
7.02e
11.6@
10.1e@

IBM POWER2
grid size

32

64

80

34.3e
35.0e
40.5e
48.9e
69.0@

33.4.
34.1e
39.2e
49.7e@
65.9@

33.7e
34.2e
39.6e
50.3 @
67.3@

34.3
35.2e
40.9e
50.4@
70.0@

32.8@
32.0e
36.4@
35.5@
39.4@
43.0@
41.0@

32.6@
31.9e
36.0@
34.7@
38.8@
41.5@
40.4@

33.0e
32.3e
36.5@
35.1@
39.0@
42.1@
40.9@

33.4@
32.7e@
36.9@
35.1@
39.1@
42.2@
40.9@

33.7e@
32.6@
37.4@
35.6@
39.6@
43.8@
41.9@

32.7e
31.6e
36.1@
34.7@
38.9@
42.6@
4l.4@

29.0e
28.60
31.2e
29.3e@
31.8@
42.0@
40.4@

31.6@
31.3@
34.4@
29.3e@
31.9e
37.6@
32.5@

Table 7: MIPS R8000
grid size

x-1
Xx-2
x-3
x-4
x-5
y-1
y-2
y-3
y-4
y-5
y-6
y-7
z-1
7-2
z-3
z-4
7-5
7-6
z-7

16

32

64

80

23.0.
23.0.
51.8@
48.5@
46.3@

23.2e
23.20
53.9@
49.7@
47.0@

17.8 e
17.8e
29.5@
28.6@
27.4@

17.8 e
17.8e
29.5@
28.5@
27.4@

49.8 e
49.8
83.1@
82.7@
28.5 «
28.5 «
82.7@

62.5e
62.6@
95.6@
95.1@
29.0 -
29.0 -
95.1@

30.0e
30.1e
38.9@
39.1@
20.6
20.6 @
39.1@

30.4e
30.5e
38.8@
39.2@
20.6e
20.6e
39.2@

29.3 -
29.3 -
83.5@
82.9@
28.6 -
28.6 ¢
82.9@

31.4-
31.4-
95.9@
95.3@
29.0-
29.0
95.3@

22.1e
22.1e
37.8@
39.1@
20.6e
20.6 @
39.1@

20.9e
20.9e
36.5@
39.0@
20.5e
20.5e
39.0@

Table 10: PentiumPro
grid size

z-1

z-7

16

32

64

80

16.0e@
16.5e
2l.4@
22.7@
21.8@

16.0e@
16.5@
2l.4@
22.6@
21.8@

16.4@
16.9e
22.1@
23.5@
22.4@

16.5e
17.0e
22.4@
23.5@
22.4@

17.1e
17.1e
21.1@
21.9@
22.00
21.9@
21.3@

17.1e
17.1e
21.1@
21.9@
22.0@
21.9@
21.3@

17.0e
17.0e
21.1@
22.6@
22.8@
22.4@
21.9@

17.0e
17.0e
21.3@
22.7@
22.9@
22.3@
21.7@

15.0e
15.0@
17.3@
8.82
8.89
21.4@
21.1@

15.0e
15.0e
17.3e@
8.82¢
8.89 ¢
2l1.4@
2l1.1@
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10.6 «
10.6 »
10.7 «
7.81-
7.86 ¢
22.3@
22.0@

10.7 o
10.8 «
10.8 ¢
7.64 ¢
7.69 ¢
22.3@
22.0@

Table 8: MIPS R10000
grid size

x-1
Xx-2
x-3
x-4
x-5
y-1
y-2
y-3
y-4
y-5
y-6
y-7
z-1
7-2
z-3
z-4
7-5
7-6
z-7

16

32

64

80

55.9e
55.8 «
86.1e
127.@
116.@

59.7 e
59.7 e
89.5e
131.@
116.@

49.60
4960
70.8@
60.1@
63.4@

48.8@
48.7e@
68.2@
60.6@
63.9@

85.4@
85.3@
92.2@
107.@
89.7@
89.7@
108.@

88.0e@
88.0e@
97.2@
113.@
91.5@
90.4@
114.@

63.4@
63.5@
81.0@
69.0@
52.2e
52.2 e
69.1@

6l.9@
6l.7@
6l.i@
61.2@
52.4e@
52.4e@
61.8@

77.2@
77.9e@
80.3@
104.@
90.6@
90.2@
105.@

Table 11:

z-1

z-7

16

72.9e
73.0@
72.1e
103.@
89.6@
89.6@
103.@

50.0@
50.0@
63.5@
59.1@
49.8e
49.7e
59.0@

5l.5@
51.7@
60.3@
5l.5@
41.4@
41.3e
5l4e

DEC Alpha EV4

grid size

32

64

80

7.19.
7.19.
9.53
23.5@
21.0@

6.69 -
6.69 -
8.50 -
23.7@
21.3@

6.81
6.81 -
8.45 «
23.9@
2l.4@

6.74 .
6.74 -
8.62 «
24.0@
2l.4@

11.3e
11.3e
9.08e
13.8@
11.9e
16.8@
12.6@

9.22e
9.23e
7.52e
12.8e
11.2e
16.7@
12.4@

8.42 e
8.43 e
7.52 e
11.2e
10.1e
16.3@
12.1e

7.42 e
7.43 ¢
6.92
10.7e
9.78 e
15.7@
11.7e@

9.34 e
9.34 e
7.61 e
8.58 e
8.45e
14.7@
11.4e

7.98 e
7.98 e
6.53 e
8.12e
8.03 e
14.0@
10.8e

7.94 e
7.94 e
6.59 o
7.82e
7.79e
13.0@
10.3@

6.90 «
6.90 ¢
6.50
7.78e
7.75e
13.2@
10.4@



Table 12:

x-1
x-2
x-3

z-4

x-1
X-2
x-3
x-4

7-5

16

DEC Alpha EV5

grid size

32

64

80

58.3e
H8.4 e
57.3e
103.@
76.6@

58.2e
58.1e
56.1e
111.@
87.9@

60.0«
60.0e
57.0e
116.@
93.9@

62.2e
62.2e
60.4 o
117.@
96.1@

50.0e
50.2e
50.0e
85.0@
80.0@
42.8
43.5

494 e
494 e
48.7e
92.0@
85.6@
42.3 ¢
421

50.9e
50.9e
50.4 e
89.9@
81.6@
37.1e
33.9e

42.2
42.2
42,1«
88.0@
80.1@
42.8 ¢
40.7

42.1e
421 e
42.0e@
62.8@
60.3@
42.5@
44.4@

Table

16

26.4 e
26.3 e
25.7e
40.7@
38.1@
41.7@
41.6@

22.5e
22.5e
22.2 e
39.3@
36.1@
42.6@
40.8@

22.5e
22.5e
22.30
39.5@
36.2@
38.5@
30.4e

15: Cray J90

grid size

32

64

80

44.3@
44.3@
43.7@
41.9@
26.3 @

63.6@
63.0@
65.0@
61.6@
43.00

79.8@
75.0@
77.7@
74.9@
57.5@

68.3@
66.9@
68.1@
67.6@
64.2@

31.7e
31.9e
33.0e
43.8@
272
26.3 e
44.5@

49.5@
492
50.0e
6l.9@
43.0e@
41.6e
65.1@

64.4@
65.0@
65.4@
79.4@
58.2e
62.2e
74.7@

55.6@
54.8@
53.7@
67.7@
65.1@
67.3@
65.0@

3l.4e
30.8e
31.2e
43.7@
26.2
26.5e
43.7@

46.7@
46.8 @
47.5@
63.5@
41.8e
419
62.9@

6l.5@
63.3@
62.7@
77.7@
58.7e
60.7@
77.3@

52.4e@
52.6@
52.9e
66.4@
63.8@
64.4@
69.2@

Table 13: Sun UltraSparc
grid size

x-3

z-4

x-1
X-2
x-3
x-4

7-5

16

32

64

80

31.9e
33.6e
32.0e
45.7@
42.0@

24.5@
25.3@
24.5@
31.0@
29.4@

25.0@
25.7@
25.1@
31.6@
30.0@

25.1@
25.8@
25.2@
31.7@
30.1@

28.2@
28.8@
28.7@
32.5@
34.5@
34.5@
33.0@

24.5@
24.8@
24.7@
24.1@
25.3@
25.9@
24.8@

25.0@
25.3@
25.1@
23.7@
25.0@
26.4@
25.2@

22.3@
22.4@
21.9@
23.4@
24.7@
26.4@
25.2@

28.0@
28.7@
27.8@
27.5@
28.8@
34.5@
33.6@

21.9@
22.0@
2l1.4@
20.0e®
20.9@
21.9@
19.1e@

19.7@
19.7@
19.3@
16.2@
17.1@
19.8@
15.5@

19.7@
19.8@
19.3@
15.3e
16.1e@
19.9@
15.5e

Table 16: Cray C90

grid size

16

32

64

80

166.@
164.@
164.@
158.@
87.9e

260.@
263.@
264.@
236.@
153. e

378.@
382.@
389.@
317.@
239. e

386.@
394.@
386.@
325.@
263.0

95.0e
96.0e
96.1e
158.@
84.1e
85.1e
159.@

172. @
172. @
172.@
245.@
146. e
148. e
246.@

282.@
283.@
282.@
333.@
225.@
226.@
318.@

313.@
315.@
312.@
344.@
249.0
254.@
327.@

101.e
101. e
101. e
158.@
84.2e
85.6e
159.@

180. e
179.@
180.@
247.@
146. e
147.e
243.@

25

287.@
289.@
288.@
330.@
226.@
228. 0
323.@

314.@
314.@
316.@
340.@
252.@
253.0
341.@

Table 14: HP PA-RISC
grid size

x-1
Xx-2
x-3
x-4
x-5
y-1

y-3
y-4

y-6
y-7
z-1

z-3
z-4
z-5

z-7

16

32

64

80

71.1e
59.9 «
73.1e
90.5e
134.@

28.2@
23.6e
27.8@
34.3@
35.9@

27.9@
23.2e
26.9e
33.3@
34.8@

28.3@
23.6e
27.0@
33.2@
35.2@

57.8 e
58.8 e
74.9e
86.3@
117.@
71.0e
78.1@

23.3e@
23.3e@
28.8@
30.4@
30.6@
26.3@
30.5@

22.5e
22.6e@
27.5@
30.2@
30.4@
26.0@
30.6@

229e
23.2e
28.3@
30.2@
30.3@
26.4@
30.6@

60.4 «
62.6
76.1@
84.9e
116.@
73.6e
76.1@

14.1
13.9
16.4e
27.6@
28.2@
28.4@
30.8@

20.4 @
19.7 e
24.6@
25.6@
26.1@
28.6@
31.3@

13.6e
13.6e
16.0e
22.8@
24.0@
15.9e
10.7 «



B.2: Scalar window code performance

Only natural loop orderings and unrolled m-loops are amenable to the scalar window opti-
mizations. Hence, only optimizations zloop-3,4,5, yloop-6,7, and zloop-6,7 are presented.

Table 17: MIPS R5000
grid size
16 32 64 80

x-3| 13.6 | 14.8 | 14.9 | 15.1
x-4| 13.6 | 14.5 | 15.0 | 15.1
x-b| 12.9 | 13.7 | 14.2 | 14.3

y-6| 12.6 | 13.5 | 13.0 | 13.3
y-7] 13.0 | 14.0 | 12.8 | 13.5

z-6| 12.4 | 12.0 | 11.8 | 11.6
z-7| 12.8 | 11.7 | 11.2 | 11.0

Table 20: IBM POWER2
grid size
16 32 64 80

x-3| 64.5 | 62.9 | 64.3 | 65.6
x-4| 66.4 | 66.0 | 66.0 | 66.0
x-5| 54.0 | 51.8 | 52.3 | 53.1

y-6| 49.7 | 47.3 | 47.7 | 47.7
y-7| 58.0 | 56.9 | 58.4 | 58.3

z-6| 50.8 | 48.6 | 47.4 | 41.2
z-7| 60.9 | 60.3 | 58.2 | 43.2

Table 23: DEC Alpha EV5
grid size
16 32 64 80

Table 18: MIPS R8000
grid size
16 32 64 80

x-3| 62.8 | 66.2 | 35.7 | 36.6
x-4| 62.9 | 66.2 | 36.9 | 36.9
x-5| 52.5 | 54.7 | 28.2 | 28.0

y-6| 51.7 | 53.9 | 27.8 | 27.7
y-7| 57.1 | 62.0 | 35.7 | 36.2

z-6| 51.2 | 53.3 | 27.8 | 25.0
z-7| 574 | 62.2 | 36.1 | 30.1

Table 21: PentiumPro
grid size
16 32 64 80

x-3| 31.7 | 23.4 | 24.3 | 24.6
x-4| 33.2 | 22.6 | 23.3 | 23.5
x-b| 33.2 | 22.7 | 23.4 | 23.5

y-6| 28.5 | 20.8 | 21.7 | 21.8
y-7] 26.4 | 19.6 | 20.3 | 20.3

z-6| 28.4 | 20.8 | 21.6 | 21.8
z-7| 28.0 | 20.4 | 20.9 | 20.9

Table 24: Sun UltraSparc
grid size
16 32 64 80

x-3| 76.9 | 74.6 | 79.3 | 80.8
x-4| 115. | 117. | 121. | 122.
x-5| 51.4 | 56.5 | 59.7 | 60.3

x-3| 454 | 31.2 | 32.2 | 32.5
x-4| 44.8 | 31.2 | 32.1 | 32.3
x-b| 354 | 26.7 | 27.5 | 27.7

y-6| 35.6 | 35.0 | 33.5 | 35.6
y-7| 53.9 | 53.5 | 42.0 | 52.3

y-6| 34.3 | 26.0 | 26.6 | 26.7
y-7| 43.2 | 30.4 | 31.0 | 31.2

z-6| 34.9 | 34.5 | 354 | 31.9
z-7] 55.5 | 53.4 | 52.8 | 41.1

Table 26: Cray J90
grid size
16 32 64 80

x-3| 21.4 | 31.1 | 41.8 | 35.2
x-4| 20.6 | 30.4 | 41.6 | 34.9
x-5| 12.5 | 20.3 | 30.3 | 34.1

y-6| 12.6 | 20.7 | 30.3 | 34.4
y-7] 20.7 | 30.6 | 42.1 | 34.8

z-6| 12.9 | 21.6 | 32.0 | 35.1
z-7| 21.2 | 31.0 | 42.2 | 35.5

z-6| 34.4 | 21.5 | 19.9 | 20.0
z-7| 43.1 | 204 | 17.1 | 171

Table 27: Cray C90
grid size
16 32 64 80

x-3| 64.2 | 109. | 155. | 164.
x-4| 67.2 | 112. | 158. | 166.
x-5| 40.3 | 73.0 | 118. | 132.

y-6| 40.1 | 72.8 | 116. | 131.
y-7| 63.7 | 106. | 150. | 161.

z-6| 40.0 | 73.0 | 116. | 131.
z-7| 64.0 | 107. | 150. | 162.
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Table 19: MIPS R10000
grid size
16 32 64 80

x-3| 139. | 147. | 95.3 | 93.8
x-4| 139. | 146. | 67.1 | 67.8
x-b| 131. | 142. | 67.2 | 67.8

y-6| 126. | 135. | 73.2 | 64.0
y-7| 134. | 140. | 73.9 | 64.6

z-6| 119. | 100. | 28.0 | 26.7
z-7] 127. | 103. | 28.3 | 27.1

Table 22: DEC Alpha EV4
grid size
16 32 64 80

x-3| 11.1 | 11.4 | 11.6 | 11.6
x-4| 12.7 | 13.1 | 13.3 | 13.4
x-5| 11.0 | 11.4 | 11.5 | 11.6

y-6| 11.2 | 114 | 11.3 | 11.1
y-71 12.9 | 13.3 | 12.9 | 12.8

z-6| 10.9 | 11.1 | 11.1 | 11.2
z-7] 13.6 | 13.4 | 14.2 | 13.8

Table 25: HP PA-RISC
grid size
16 32 64 80

x-3| 100. | 53.6 | 56.6 | 56.4
x-4| 99.4 | 54.4 | 56.8 | 57.0
x-5| 126. | 43.7 | 44.6 | 44.7

y-6| 118. | 384 | 39.7 | 39.9
y-71 82.6 | 37.9 | 39.8 | 40.0

z-6| 118. | 40.9 | 41.8 | 19.6
z-7] 95.8 | 50.4 | 54.7 | 124




Appendix C: Simulated cache performance (% load misses).

Table 28: MIPS R5000
grid size
16 32 64 80

x-3/6.780(6.120(5.830|5.770
x-4]6.450|5.970(5.760|5.710

y-3]6.4805.980(5.760(9.89 0
y-4/6.630(6.0605.800|5.750
y-716.630|6.060|6.8806.180

z-3(10.2012.9¢|12.70|12.70
z-4115.6|16.9 [16.8°|16.8 ¢
z-716.630|6.0605.800(5.750

Table 31: IBM POWER2
grid size
16 32 64 80

x-3/.6360|.7840/|.7350|.7250
x-4|.5870).7640].7250|.7250

v-3[.5370][.7640|.7250[.7150
y-4|.5870.7640)|.7250|.7250
v-71.5470|.7640|.7540|.7840

z-3(.5070|.7640]|1.59 0 |1.59 ¢
z-4|.5570|.7640|2.12 |2.11 e
z-7.5870].7640].7250|.7250

Table 34: DEC Alpha EV5
grid size
16 32 64 80

x-3(6.780(6.120(5.830(5.770
x-4/6.450]5.970(5.760|5.710

y-3/6.480(5.980(5.760(5.710
y-4(6.630(6.060|5.800(5.750
y-716.630/6.060(5.800|5.750

z-316.480|12.70 |12.7e|12.7
2-4(6.630(|16.9 ¢ |16.8° [16.8 *
z-716.630|6.060|5.800|5.750

Table 29: MIPS R8000
grid size
16 32 64 80

x-3(0.000/0.000].3690|.3690
x-4/0.000/0.000].3690|.3590

y-3/0.000/0.000|.3690|.3590
y-4|/0.0000.000|.3690|.3590
y-710.000/0.000].3690|.3590

z-3/0.0000.000|.3690|.3590
z-410.000|0.000].3690|.3590
z-710.000/0.000|.3690|.3590

Table 32: PentiumPro
grid size
16 32 64 80

x-3/3.980(6.120(5.830|5.770
x-4(3.220|5.970(5.760|5.710

y-3|2.840(5.980(5.760(5.710
y-4(3.720(6.060|5.800(5.750
y-713.73916.060(5.8090(5.750

z-3(3.180/5.980|12.70 |12.7e
z-4|3.540(6.060|16.8 ¢ [16.8
z-73.74016.060|5.800|5.750

Table 35: Sun UltraSparc
grid size
16 32 64 80

x-3/0.000(3.070|2.910|2.880
x-4/0.000|3.040|2.910|2.880

y-3/0.000|3.000(2.880/2.860
y-410.000(3.100(2.990|2.98 -
y-7(0.000|3.100]2.990|2.980

z-3(0.000|3.000|4.93 ¢ |5.61
z-410.000|4.110|6.89 ¢ |8.42 «
z-710.000]3.100|2.980|2.970
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Table 30: MIPS R10000
grid size

16 32 64 80
x-3[0.000[.0600[1.460[1.450
x-4/0.000/.229 - |1.460|1.440
y-30.000[.0500|1.450|1.440
y-4/0.000/.229 - |1.460(1.430
y-7(0.000/.229 - [1.460|1.440
2-3[0.000[.0600|1.450|1.430
2-4|0.000/.229 - [1.460|1.440
2-7/0.000/|.110 |1.460|1.440

Table 33: DEC Alpha EV4
grid size

16 32 64 80
x-3/6.780|6.120(5.83015.770
x-4(6.860|6.360|6.150/6.110

y-3/10.605.980|9.930|12.70
y-4/8.940|10.30|14.00|15.2°
y-7]7.560|7.46©|8.620|8.980

z-3|13.4¢|12.90|12.70|12.70
z-4(17.6 |17.32|17.20|17.20
z-7]7.560]8.150|8.360|8.360

Table 36: HP PA-RISC
grid size
16 32 64 80

x-3|7.270|6.520(6.190(6.120
x-4|7.010|6.470]6.220|6.170

y-3|11.906.360(6.110|13.6 ©
y-4|7.650|7.680|8.520(9.030
y-7(7.380|6.850|8.4006.890

z-3|11.703.000(14.6 0 |14.50
2-4116.5¢4.110(20.3 ¢ |20.3 *
z-77.380|3.100|6.810|6.790




